
Curriculum Map - KS4 Computer Science (J277)
Subject: Computer Science Year Group: Year 10

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2

Content
Descriptive/propositional
knowledge

‘knowing that’

E-safety revision

2.1 Algorithms

Programming

understand and apply
the fundamental
principles and concepts
of Computer Science,
including abstraction,
decomposition, logic,
algorithms, and data
representation

2.2 Programming
fundamentals

Programming

know that effective
programs require the use
of programming
constructs

analyse problems in
computational terms
through practical
experience of solving such
problems, including
designing, writing and
debugging programs

2.3 Producing robust
programs

2.4 Computational logic

3.0 Programming Project
(3 wks)

know that each logic gate
has a corresponding truth
table

3.0 Programming
Project (3 wks)

2.5 Programming
languages and IDEs

2.6 Data
representation

think creatively,
innovatively,
analytically, logically
and critically

3.1 Programming
Project (2 wks)

Mock preparation

know that problems
can be solved using
computational
thinking and know
how to apply it
through a chosen
programming
language.

Mocks / mock

feedback

programming

project /theory

contingency

know that the exam

covers computer

systems,programmi

ng, computational

thinking, and

algorithms

Skills
Ability knowledge

‘knowing how’

know how to use

computational methods

such as abstraction,

decomposition and

algorithmic thinking

when solving problems

know the standard

search and sort

algorithms and be able

to identify them if given

the code.

know how to use

variables, constants,

operators, inputs, outputs

and assignments

Know how to use the

three basic programming

constructs to control the

flow of a program

Know how to use basic

string manipulation and

basic file handling

know how to use skills

from Component 01 and

Component 02 to create a

programmable solution to

a set problem.

know how and why

defensive design methods

are used in programming

Know how to implement

maintainability in a

know the

characteristics and

purpose of different

levels of programming

language

know the differences

between high- and

low-level programming

languages

know the purpose of

translators and the

characteristics of a

know how to

accurately answer

the various types of

examination

question and apply

the correct

knowledge

know how to plan

for and answer long

answer questions

know how to

self-assess

individual progress

according to

feedback given by

the teacher

know how to reACT

to feedback given

by the teacher and

improve knowledge

where needed

know how to produce

algorithms using

pseudocode and flow

diagrams and can

interpret correct or

complete algorithms.

operations:

open, read, write, close

know about the use of

records to store data and

the use of SQL to search

for data

know about the use of

arrays (or equivalent)

when solving problems,

including both one and

two dimensional

arrays

how to use subprograms

(functions and

procedures) to produce

structured code

program and justify its

use.

know the purpose of

testing and the various

means of testing and be

able to select and use

suitable test data.

Know how to identify

syntax and logic errors

know why data is

represented in computer

systems in binary form

know how to create

simple logic diagrams

using the operations AND,

OR and NOT

know how to create truth

tables, combine Boolean

operators to two levels

know how to use truth

tables to solve problems

know about applying

computing-related

mathematics inc.

exponentiation, MOD and

DIV

Know how data is

represented and the

reasons compression is

used

compiler and an

interpreter

know the common

tools and facilities

available in an

Integrated

Development

Environment (IDE)

Key Questions What is computational

thinking?

What is pseudocode and

why do we use it?

How does it differ from a

regular programming

language?

How is data stored and

accessed when a program

is executed?

What is SQL? Why and

how is it used?

Why do we need to use

subprograms?

What is a robust

program?

What is input validation?

Why is it important to

include it when coding?

How many marks is the

project worth

How long is allocated for

the project?

What are the units

that will be

included in the

mock?

How many marks is

the paper out of?

How long is the

mock examination?

What are my areas

of strength?

Which areas have I

shown to have gaps

in knowledge?

Which type of

question did I find

most difficult?

Assessment
(Each topic is marked out
of 20)

3 week assessment, End
of term test

3 week assessment, End
of term test

3 week assessment, End
of term test

3 week assessment,
End of term test

Practice questions ,
past papers and
feedback

Mock Exam

Literacy/ Numeracy/
SMSC/ Character

Development in
communication/ literacy
skills/apply mathematical
skills relevant to
Computer Science.

Development in
communication/ literacy
skills/apply mathematical
skills relevant to
Computer Science.

Development in
computing-related
mathematics

literacy skills specifically
report writing and
technical report writing

Development in
communication/
literacy skills/apply
mathematical skills
relevant to Computer
Science.

Development in
communication/
literacy skills
specifically report
writing and
technical report
writing

Development in
communication/
literacy skills

Futures Emphasis on the mathematical skills used to express computational laws and processes.

This qualification is suitable for learners intending to pursue any career in which an understanding of technology is needed.

Students typically go on to A Levels in Computer Science or IT.

Enrichment Cyber Discovery
Challenge (new challenge
every year).
https://joincyberdiscover
y.com/

Cyber Discovery Challenge Cyber Discovery Challenge Cyber Discovery
Challenge

Cyber Discovery
Challenge

https://joincyberdiscovery.com/
https://joincyberdiscovery.com/

